Mass transport in multicomponent compressible fluids: Local and global well-posedness in classes of strong solutions for general class-one models

نویسندگان

چکیده

We consider a system of partial differential equations describing mass transport in multicomponent isothermal compressible fluid. The diffusion fluxes obey the Fick–Onsager or Maxwell–Stefan closure approach. Mechanical forces result into one single convective mixture velocity, barycentric one, which obeys Navier–Stokes equations. thermodynamic pressure is defined by Gibbs–Duhem equation. Chemical potentials and are derived from potential, Helmholtz free energy, with bulk density allowed to be general convex function densities constituents. resulting PDEs mixed parabolic–hyperbolic type. prove two theoretical results concerning well-posedness model classes strong solutions: 1. solution always exists unique for short-times 2. If initial data sufficiently near an equilibrium solution, valid on arbitrary large, but finite time intervals. Both rely contraction principle systems type that behave like linearised parabolic part operator possesses self map property respect some closed ball state space, while being contractive lower order norm only. In this paper, we implement these ideas means precise priori estimates spaces exact regularity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Well-posedness of Compressible Bipolar Navier–Stokes–Poisson Equations

We consider the initial value problem for multi-dimensional bipolar compressible Navier– Stokes–Poisson equations, and show the global existence and uniqueness of the strong solution in hybrid Besov spaces with the initial data close to an equilibrium state.

متن کامل

Local well-posedness results for density-dependent incompressible fluids

This paper is dedicated to the study of the initial value problem for density dependent incompressible viscous fluids in R with N ≥ 2. We address the question of well-posedness for large data having critical Besov regularity and we aim at stating well-posedness in functional spaces as close as possible to the ones imposed in the incompressible Navier Stokes system by Cannone, Meyer and Planchon...

متن کامل

The Compressible Viscous Surface-Internal Wave Problem: Local Well-Posedness

This paper concerns the dynamics of two layers of compressible, barotropic, viscous fluid lying atop one another. The lower fluid is bounded below by a rigid bottom, and the upper fluid is bounded above by a trivial fluid of constant pressure. This is a free boundary problem: the interfaces between the fluids and above the upper fluid are free to move. The fluids are acted on by gravity in the ...

متن کامل

Global well-posedness and multi-tone solutions of a class of nonlinear nonlocal cochlear models in hearing

We study a class of nonlinear nonlocal cochlear models of the transmission line type, describing the motion of basilar membrane (BM) in the cochlea. They are damped dispersive partial differential equations (PDEs) driven by time dependent boundary forcing due to the input sounds. The global well-posedness in time follows from energy estimates. Uniform bounds of solutions hold in case of bounded...

متن کامل

the translators agency and ideological manipulation in translation: the case of political texts in translation classes in iran

در این تحقیق به نقش واسطه ای مترجم در ایجاد تغییرات ایدئولوژیک در ترجمه متون سیاسی پرداخته شده است. بدین منظور محقق متنی سیاسی در خصوص ادعاهای آمریکا در مورد برنامه هسته ای ایران را انتخاب کرد. این متن از سایت spacewar.com انتخاب شد که دارای ایدئولوژی مغرضانه در مورد برنامه هسته ای ایران است. سپس یک گروه 30 نفره از دانشجویان کارشناسی ارشدرشته مترجمی زبان انگلیسی دانشگاه شیخ بهایی انتخاب شدند. ا...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis-theory Methods & Applications

سال: 2021

ISSN: ['1873-5215', '0362-546X']

DOI: https://doi.org/10.1016/j.na.2021.112389